Polaris 3-D Position-Sensitive CdZnTe Gamma-Ray Imaging Spectrometers

Zhong He

On behalf of the **Orion** group

and H3D Inc.

Los Alamos National Laboratory, P-25 August 12th, 2013

This project has been jointly funded by DOD DTRA and DOE NA-22

Polaris Systems

Eighteen $2\times2\times1.5$ cm³ CdZnTe detectors (108 cm³, 648 grams = 1.43 lb)

The two movies on Polaris operation, principle of gamma-ray imaging, and "Today and Tomorrow" were deleted since they take too much memory to be sent by E-mail (Please contact Zhong He at UM if people are particularly interested in those movies.)

Performance Goals

 $\Delta E/E \le 1\%$ FWHM (at 662 keV)

Real-time γ Imaging + isotope I.D.

$$\cos \theta = 1 - \frac{E_1 m_e c^2}{(E_1 + E_2) \cdot E_2}$$

Number of photons: 2033

Goals

Close to HPGe resolution at RT

Minimize impacts of imperfections of commercially available crystals

Real-time γ -ray imaging

Intelligent data analysis based on signature of radiation interactions

Polaris 1.1 (GMI ASIC) – August 2010

Polaris 1.1 (GMI ASIC) - August 2010

137Cs Energy Spectra of the 1st Polaris system #1.1

(From all 18 detectors of Polaris, 24°C, uncollimated ¹³⁷Cs)

2nd-Generation Polaris System v2.0 (BNL ASIC)

(From all 18 detectors, room-temperature, uncollimated ¹³⁷Cs)

2nd-Generation Polaris System v2.0 (BNL ASIC)

(From all 18 detectors, room-temperature, uncollimated ¹³⁷Cs)

Gamma Imaging Capability

Next-Generation <u>Digital Polaris Detectors</u>

From analogue to digital detectors

Advantages of digital detectors

- (1) Sub-pixel position resolution (better γ -ray energy & imaging resolutions) $\Delta x \& \Delta y$ reduced from 1.72 mm pixel pitch \rightarrow 0.3 mm FWHM at 662 keV (sub-pixel position resolution is inversely proportional to energy deposition)
- (2) Improved energy & position reconstruction using digital signal processing, including on multiple-interaction events under the same anode pixel and significantly improved performance at higher gamma energies
- (3) More accurate event classification (identifying photo-electric, Compton, pair production and charge particle interactions)
- (4) Lower power (from ~3 mW/ch. on analogue ASIC to 1.65 mW/ch.)
- (5) Universal ASIC for <u>all room-temperature</u> semiconductor detectors CdZnTe, Hgl₂,TIBr,···

Acknowledgements/Deliverables

DOD DTRA (Award #: HDTRA1-12-C-0034)

Support development on CdZnTe detectors & ASICs + staff

U.S. DOE NA-22

Support graduate students on **digital algorithm** development

Impact of improved electronic noise $2.5 \text{ keV} \rightarrow 2.0 \text{ keV}$ FWHM

Close to HPGe resolution is possible (1-pixel ¹³⁷Cs spectrum of CZT #4E-1 & BNL ASIC)

Closer to HPGe resolution (1-pixel ¹³⁷Cs spectrum of CZT #4E-1 & digital ASIC)

228Th Energy Spectra Polaris-2

Single-Pixel Energy Spectrum of ²²⁸Th & ¹³⁵Eu on Detector #4E-1

- 1-pixel events, **0.27%** FWHM @ 2.6 MeV
- 2-pixel events, **0.49%** FWHM; **1 4** pixel events, **0.74%** FWHM

Real-Time Sub-Pixel Position Sensing

GM-I digital ASIC & CdZnTe detector #4E-3

662 keV Signal Amplitude versus Sub-Pixel Position

Improved Simple Back-Projection Gamma-Ray Imaging

⁶⁰Co – 1.3 MeV

Without sub-pixel position sensing

With sub-pixel position sensing

High-Flux Experiment Results

Photopeak shift and spectral degradation vs. flux

